Precalculus

3-03 Properties of Logarithms

Properties of Logarithms

- Product Property: $\log_b(uv) = \log_b u + \log_b v$
- Quotient Property: $\log_b \left(\frac{u}{v}\right) = \log_b u \log_b v$
- Power Property: $\log_b u^n = n \log_b u$

Write each log in terms of ln 2 and ln 5.

ln 10

 $ln\frac{5}{32}$

Expand

 $\log 3x^2y$

 $\ln \frac{\sqrt{4x+1}}{8}$

Condense

$$\frac{1}{3}\log x + 5\log(x-3)$$

$$4\ln(x-4)-2\ln x$$

$$\frac{1}{5}(\log_3 x + \log_3(x - 2))$$

Change-of-Base Formula

$$\log_b c = \frac{\log_a c}{\log_a b}$$

Evaluate log₃ 17

Because logs are ______of exponentials, the *x* and *y* are

_____and the graph is ______over the line y = x.

$$y = \log_b(x - h)$$

- Domain: _____
- Range: _____
- VA: _____
- *x*-int: _____

To graph a logarithm

- 1. Find and graph the vertical _____
- 2. Make a _____
- 3. Use ______formula $\log_b x = \frac{\log x}{\log b}$
- ____function on some TI graphing calcs 4. Or use the ___ MATH → logBASE

